TD2: Poisson Processes

Exercice 1 - Jump times of a Poisson process.

Let $\lambda > 0$ consider a Poisson process X with intensity λ , let $(J_n)_n$ be the jump times of X. Let $n \ge 1$ and t > 0, let U_1, \ldots, U_n be independent uniform random variables in [0, t]. Let σ be the (random) permutation of $\{1, \ldots, n\}$ such that,

$$U_{\sigma(1)} \leq U_{\sigma(2)} \leq \cdots \leq U_{\sigma(n)}.$$

(1) Prove that σ is well-defined on a set of measure 1. If the $(U_i)_i$ are pairwise distinct, then σ is well-defined. We have,

$$(C_i)_i$$
 are partwise distinct, then C is well defined. We have

$$\mathbb{P}\left(\exists i \neq j, U_i = U_j\right) \le \sum_{i \neq j} \mathbb{P}(U_i = U_j) = 0.$$

So, almost surely the $(U_i)_i$ are pairwise disjoint and σ is well-defined on a set of measure 1.

(2) Show that the random variable $(U_{\sigma(i)})_{1 \leq i \leq n}$ has density

$$d_n(u_1, \ldots, u_n) = n!/t^n \mathbf{1}\{u_1 < \cdots < u_n\}.$$

We have for every bounded measurable $f : [0, t]^n \to \mathbb{R}$,

$$\mathbb{E}[f(U_{\sigma(1)}, \dots, U_{\sigma(n)})] = \sum_{\sigma_0 \in S_n} \mathbb{E}[\mathbf{1}_{\sigma = \sigma_0} f(U_{\sigma_0(1)}, \dots, U_{\sigma_0(n)})]$$

$$= \sum_{\sigma_0 \in S_n} \mathbb{E}[\mathbf{1}_{U_{\sigma_0(1)} < \dots < U_{\sigma_0(n)}} f(U_{\sigma_0(1)}, \dots, U_{\sigma_0(n)})]$$

$$= \sum_{\sigma_0 \in S_n} \mathbb{E}[\mathbf{1}_{U_1 < \dots < U_n} f(U_1, \dots, U_n)]$$

$$= n! \mathbb{E}[\mathbf{1}_{U_1 < \dots < U_n} f(U_1, \dots, U_n)]$$

$$= \int_{[0,t]^n} n! \mathbf{1}_{u_1 < \dots < u_n} f(u_1, \dots, u_n) \frac{du_1}{t} \dots \frac{du_n}{t}$$

$$= \int_{[0,t]^n} f(u_1, \dots, u_n) d_n(u) du_1 \dots du_n.$$

Where the manipulation in the previous display comes from the fact for every fixed $\sigma_0 \in S_n$, $(U_{\sigma_0(i)})_i$ and $(U_i)_i$ have the same law.

(3) Show that the density of (J_1, \ldots, J_n) conditionally on $\{X_t = n\}$ is d_n , that is for any non-negative measurable function $f : \mathbb{R}^n \to \mathbb{R}_+$, we have

$$\mathbb{E}\left[f(J_1,\ldots,J_n)|X_t=n\right] = \int_{[0,t]^n} f(s_1,\ldots,s_n)d_n(s_1,\ldots,s_n)ds_1\ldots ds_n.$$

A Poisson process almost surely doesn't blow up, in particular almost surely for every $n \ge 1$, $S_n = J_n - J_{n-1}$ is well-defined and finite. Furthermore, the S_n 's are iid and follow an exponential law of parameter λ . For every $n \ge 1$ the density of (S_1, \ldots, S_{n+1}) is $\lambda^{n+1} \exp\left(-\sum_{i=1}^{n+1} \lambda s_i\right) \mathbf{1}_{\forall i, s_i \ge 0}$. Therefore, (J_1, \ldots, J_{n+1}) has density $\lambda^{n+1} \exp\left(-\lambda j_{n+1}\right) \mathbf{1}_{j_1 \le \cdots \le j_{n+1}}$. Thus,

$$\mathbb{E}[f(J_1,\ldots,J_n)\mathbf{1}_{X_t=n}] = \mathbb{E}[f(J_1,\ldots,J_n)\mathbf{1}_{J_n \le t \le J_{n+1}}]$$

$$= \int_{\mathbb{R}^{n+1}_+} f(j_1,\ldots,j_n)\mathbf{1}_{j_1 \le \cdots \le j_n \le t \le j_{n+1}}\lambda^{n+1} \exp\left(-\lambda j_{n+1}\right) dj_1 \ldots dj_{n+1}$$

$$= \int_{[0,t]^n} f(j_1,\ldots,j_n)\mathbf{1}_{j_1 \le \cdots \le j_n} dj_1 \ldots dj_n \times \int_t^{+\infty} \lambda^{n+1} \exp\left(-\lambda j_{n+1}\right) dj_{n+1}$$

$$= \int_{[0,t]^n} f(j_1,\ldots,j_n)\mathbf{1}_{j_1 \le \cdots \le j_n} dj_1 \ldots dj_n \lambda^n e^{-\lambda t}.$$

Furthermore, X_t follows a Poisson law of parameter λt so $\mathbb{P}(X_t = n) = \frac{(\lambda t)^n e^{-\lambda t}}{n!}$. So,

$$\mathbb{E}[f(J_1,\ldots,J_n)|X_t=n] = \int_{[0,t]^n} f(j_1,\ldots,j_n) \mathbf{1}_{j_1\leq\cdots\leq j_n} \frac{n!}{t^n} dj_1\ldots dj_n.$$

(4) Deduce from the previous questions a way to sample the trajectories on [0, t] of a Poisson process using only uniform random variables and Poisson random variables.

Sample N a random Poisson random variable of parameter λt , and $(U_i)_{i\geq 1}$ independent uniform random variables. Take the N first uniform random variables U_1, \ldots, U_N and order them as $U_{\sigma(1)} < \cdots < U_{\sigma(N)}$. One can then define for every $i \in \{1, \ldots, N-1\}$ and $s \in [U_{\sigma(i)}, U_{\sigma(i+1)}), X_s = i$ and for $s \in [U_{\sigma(N)}, t] X_s = N$. The process $(X_s)_{s\in[0,t]}$ has the law of Poisson process of intensity $\lambda > 0$ on [0, t].

Exercice 2 — $M/GI/\infty$ queue.

Let $X = (X_t)_{t \ge 0}$ be a Poisson process of intensity $\lambda > 0$, we denote $(J_n)_n$ the jump times of X. Let $(Z_n)_n$ be iid random variables, we denote G the cdf of Z_1 and $1/\mu$ the mean of Z_1 . Consider the following model, you operate a restaurant in which the n^{th} customer arrives at time J_n and leaves at time $J_n + Z_n$. You want to estimate the number N_t of customers in the shop at time t. Note that for every $t \ge 0$, we have

$$N_t = \sum_n \mathbf{1} \{ J_n \le t \le J_n + Z_n \}.$$

(1) Let X a Poisson random variable of parameter $\alpha > 0$ and $(B_n)_n$ be iid Bernoulli random variables of parameter p independent from X, show that $Y = \sum_{n=1}^{X} B_n$ is a Poisson random variable of parameter αp .

$$\mathbb{P}(Y=n, X=N) = e^{-\alpha} \frac{\alpha^N}{N!} \binom{N}{n} p^n (1-p)^{N-n}$$

Now fix $n \ge 0$, summing the above display over $N \ge 0$, obtain

$$\mathbb{P}(Y=n) = e^{-\alpha p} \frac{(\alpha p)^n}{n!}.$$

(2) Let $t \ge 0$, $n \ge 0$ and let U denote a uniform random variable in [0, t], define $p = \mathbb{P}(Z_1 > U)$. Show that conditionally on $X_t = n$, the random variable N_t is Binomial random variable of parameter (n, p).

Let U_1, \ldots, U_n be independent uniform random variables in [0, t] and let σ be the permutation of $\{1, \ldots, n\}$ defined almost surely by $U_{\sigma(1)} < \cdots < U_{\sigma(n)}$. Conditionally on $X_t = n$, (J_1, \ldots, J_n) has the law of $(U_{\sigma(1)}, \ldots, U_{\sigma(n)})$. Thus, still conditionally on $X_t = n$, we have

$$N_{t} = \sum_{k=1}^{n} \mathbf{1}\{t \leq J_{k} + Z_{k}\}$$

$$\stackrel{(d)}{=} \sum_{k=1}^{n} \mathbf{1}\{t \leq U_{\sigma(k)} + Z_{k}\}$$

$$\stackrel{(d)}{=} \sum_{k=1}^{n} \mathbf{1}\{t \leq U_{k} + Z_{k}\}.$$

So conditionally on $X_t = n$, N_t is a binomial random variable of parameter (n, p)where $p = \mathbb{P}(t \leq Z_1 + U) = \mathbb{P}(t - U \leq Z_1) = \mathbb{P}(U \leq Z_1)$. The last inequality following from the fact that $t - U \stackrel{(d)}{=} U$.

(3) Let t > 0 and $\alpha(t) = \lambda \int_0^t \mathbb{P}(Z_1 > x) dx$, show that N(t) is a Poisson random variable with parameter $\alpha(t)$.

According to the previous given $k \ge 0$ and $n \ge k$, we have

$$\mathbb{P}(N_t = k, X_t = n) = e^{-\lambda t} (\lambda t)^n / n! \binom{n}{k} p^k (1-p)^{n-k}.$$

Summing over $n \ge k$, we obtain

$$\mathbb{P}(N_t = k) = e^{-\lambda t p} (\lambda t p)^k / k!.$$

This means that N_t is a Poisson random variable of parameter λtp , finally $p = \mathbb{P}(Z_1 > U) = \frac{1}{t} \int_0^t \mathbb{P}(Z_1 > s) ds$, thus $\lambda tp = \alpha(t)$.

(4) Show that as $t \to \infty$, N_t converges in law toward a Poisson law of parameter $\rho = \lambda/\mu$.

As $t \to \infty$, we have $\alpha(t) \to \lambda \int_0^\infty \mathbb{P}(Z_1 > s) ds = \lambda \mathbb{E}S = \lambda/\mu$. It follows that,

$$\lim_{t \to \infty} \mathbb{P}(N_t = k) = e^{-\rho} \frac{\rho^k}{k!}.$$

In France approximately, 1903896 new cars have been bought each year between 1967 and 2023 (source : CCFA, Comité des Constructeurs Français d'Automobiles). Assume that the French people buy cars according to a Poisson Process of parameter $\lambda = 1903896$ per year and that there was no car bought before 1967.

(5) Assume that each car owner keeps its car for a duration uniform between 0 and 20 years. What is the expected number of cars in the French fleet in the year 1977 ? what about in the year 1987 ? and Afterward ? If we keep the notations of the previous section, the expected number of cars in the

fleet in the year 1967 + t is $\alpha(t) = \lambda \int_0^t \mathbb{P}(Z_1 > s) ds$. If Z_1 follows a uniform random variable in [0, b] with b = 20, we have for every s < b, $\mathbb{P}(Z_1 > s) ds = 1 - s/b$ and = 0 otherwise. It follows that α is constant after t = b and for $t \leq b$, we have,

$$\alpha(t) = \lambda \int_0^t 1 - \frac{s}{b} ds = \lambda (t - \frac{t^2}{2b}).$$

We obtain,

$$\alpha(10) = \frac{3}{8}\lambda b \simeq 15M$$
$$\alpha(20) = \lambda b/2 \simeq 20M$$

(6) Answer the previous question now assuming that each owner keeps its car for an exponential duration of parameter 1/10. Similar computations yield,

$$\alpha(t) = \lambda \int_0^t \exp(-2s/b) ds = \frac{\lambda b}{2} \left(1 - e^{-2t/b}\right).$$