
ENS de Lyon — Mathematic department Master 1 — Spring 2025
Stochastic processes V. Issa & E. Jacob

TD2: Poisson Processes

Exercice 1 — Jump times of a Poisson process.
Let λ > 0 consider a Poisson process X with intensity λ, let (Jn)n be the jump times of
X. Let n ≥ 1 and t > 0, let U1, . . . , Un be independent uniform random variables in [0, t].
Let σ be the (random) permutation of {1, . . . , n} such that,

Uσ(1) ≤ Uσ(2) ≤ · · · ≤ Uσ(n).

(1) Prove that σ is well-defined on a set of measure 1.
If the (Ui)i are pairwise distinct, then σ is well-defined. We have,

P (∃i ̸= j, Ui = Uj) ≤
∑
i ̸=j

P(Ui = Uj) = 0.

So, almost surely the (Ui)i are pairwise disjoint and σ is well-defined on a set of
measure 1.

(2) Show that the random variable (Uσ(i))1≤i≤n has density

dn(u1, . . . , un) = n!/tn1{u1 < · · · < un}.

We have for every bounded measurable f : [0, t]n → R,

E[f(Uσ(1), . . . , Uσ(n))] =
∑
σ0∈Sn

E[1σ=σ0f(Uσ0(1), . . . , Uσ0(n))]

=
∑
σ0∈Sn

E[1Uσ0(1)
<···<Uσ0(n)

f(Uσ0(1), . . . , Uσ0(n))]

=
∑
σ0∈Sn

E[1U1<···<Unf(U1, . . . , Un)]

= n!E[1U1<···<Unf(U1, . . . , Un)]

=

∫
[0,t]n

n!1u1<···<unf(u1, . . . , un)
du1

t
. . .

dun

t

=

∫
[0,t]n

f(u1, . . . , un)dn(u)du1 . . . dun.

Where the manipulation in the previous display comes from the fact for every fixed
σ0 ∈ Sn, (Uσ0(i))i and (Ui)i have the same law.

(3) Show that the density of (J1, . . . , Jn) conditionally on {Xt = n} is dn, that is for
any non-negative measurable function f : Rn → R+, we have

E [f(J1, . . . , Jn)|Xt = n] =

∫
[0,t]n

f(s1, . . . , sn)dn(s1, . . . , sn)ds1 . . . dsn.
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A Poisson process almost surely doesn’t blow up, in particular almost surely for
every n ≥ 1, Sn = Jn − Jn−1 is well-defined and finite. Furthermore, the Sn’s are
iid and follow an exponential law of parameter λ. For every n ≥ 1 the density
of (S1, . . . , Sn+1) is λn+1 exp

(
−
∑n+1

i=1 λsi
)
1∀i,si≥0. Therefore, (J1, . . . , Jn+1) has

density λn+1 exp (−λjn+1)1j1≤···≤jn+1 . Thus,

E[f(J1, . . . , Jn)1Xt=n] = E[f(J1, . . . , Jn)1Jn≤t≤Jn+1 ]

=

∫
Rn+1
+

f(j1, . . . , jn)1j1≤···≤jn≤t≤jn+1λ
n+1 exp (−λjn+1) dj1 . . . djn+1

=

∫
[0,t]n

f(j1, . . . , jn)1j1≤···≤jndj1 . . . djn ×
∫ +∞

t

λn+1 exp (−λjn+1) djn+1

=

∫
[0,t]n

f(j1, . . . , jn)1j1≤···≤jndj1 . . . djnλ
ne−λt.

Furthermore, Xt follows a Poisson law of parameter λt so P(Xt = n) = (λt)ne−λt

n!
.

So,

E[f(J1, . . . , Jn)|Xt = n] =

∫
[0,t]n

f(j1, . . . , jn)1j1≤···≤jn

n!

tn
dj1 . . . djn.

(4) Deduce from the previous questions a way to sample the trajectories on [0, t] of
a Poisson process using only uniform random variables and Poisson random vari-
ables.
Sample N a random Poisson random variable of parameter λt, and (Ui)i≥1 inde-
pendent uniform random variables. Take the N first uniform random variables
U1, . . . , UN and order them as Uσ(1) < · · · < Uσ(N). One can then define for every
i ∈ {1, . . . , N − 1} and s ∈ [Uσ(i), Uσ(i+1)), Xs = i and for s ∈ [Uσ(N), t] Xs = N .
The process (Xs)s∈[0,t] has the law of Poisson process of intensity λ > 0 on [0, t].

Exercice 2 — M/GI/∞ queue.

Let X = (Xt)t≥0 be a Poisson process of intensity λ > 0, we denote (Jn)n the jump times
of X. Let (Zn)n be iid random variables, we denote G the cdf of Z1 and 1/µ the mean
of Z1. Consider the following model, you operate a restaurant in which the nth customer
arrives at time Jn and leaves at time Jn + Zn. You want to estimate the number Nt of
customers in the shop at time t. Note that for every t ≥ 0, we have

Nt =
∑
n

1{Jn ≤ t ≤ Jn + Zn}.

(1) Let X a Poisson random variable of parameter α > 0 and (Bn)n be iid Bernoulli

random variables of parameter p independent from X, show that Y =
∑X

n=1Bn is
a Poisson random variable of parameter αp.
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Let N ≥ 0, conditionally on X = N , Y is binomial of parameter (N, p). So for
every n ∈ {0, . . . , N},

P(Y = n,X = N) = e−αα
N

N !

(
N

n

)
pn(1− p)N−n.

Now fix n ≥ 0, summing the above display over N ≥ 0, obtain

P(Y = n) = e−αp (αp)
n

n!
.

(2) Let t ≥ 0, n ≥ 0 and let U denote a uniform random variable in [0, t], define
p = P(Z1 > U). Show that conditionally on Xt = n, the random variable Nt is
Binomial random variable of parameter (n, p).
Let U1, . . . , Un be independent uniform random variables in [0, t] and let σ be the
permutation of {1, . . . , n} defined almost surely by Uσ(1) < · · · < Uσ(n). Con-
ditionally on Xt = n, (J1, . . . , Jn) has the law of (Uσ(1), . . . , Uσ(n)). Thus, still
conditionally on Xt = n, we have

Nt =
n∑

k=1

1{t ≤ Jk + Zk}

(d)
=

n∑
k=1

1{t ≤ Uσ(k) + Zk}

(d)
=

n∑
k=1

1{t ≤ Uk + Zk}.

So conditionally on Xt = n, Nt is a binomial random variable of parameter (n, p)
where p = P(t ≤ Z1 + U) = P(t − U ≤ Z1) = P(U ≤ Z1). The last inequality

following from the fact that t− U
(d)
= U .

(3) Let t > 0 and α(t) = λ
∫ t

0
P(Z1 > x)dx, show that N(t) is a Poisson random

variable with parameter α(t).
According to the previous given k ≥ 0 and n ≥ k, we have

P(Nt = k,Xt = n) = e−λt(λt)n/n!

(
n

k

)
pk(1− p)n−k.

Summing over n ≥ k, we obtain

P(Nt = k) = e−λtp(λtp)k/k!.

This means that Nt is a Poisson random variable of parameter λtp, finally p =
P(Z1 > U) = 1

t

∫ t

0
P(Z1 > s)ds, thus λtp = α(t).

(4) Show that as t → ∞, Nt converges in law toward a Poisson law of parameter
ρ = λ/µ.
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As t → ∞, we have α(t) → λ
∫∞
0

P(Z1 > s)ds = λES = λ/µ. It follows that,

lim
t→∞

P(Nt = k) = e−ρρ
k

k!
.

In France approximately, 1903896 new cars have been bought each year between
1967 and 2023 (source : CCFA, Comité des Constructeurs Français d’Automobiles).
Assume that the French people buy cars according to a Poisson Process of parameter
λ = 1903896 per year and that there was no car bought before 1967.

(5) Assume that each car owner keeps its car for a duration uniform between 0 and 20
years. What is the expected number of cars in the French fleet in the year 1977 ?
what about in the year 1987 ? and Afterward ?
If we keep the notations of the previous section, the expected number of cars in the
fleet in the year 1967+ t is α(t) = λ

∫ t

0
P(Z1 > s)ds. If Z1 follows a uniform random

variable in [0, b] with b = 20, we have for every s < b, P(Z1 > s)ds = 1 − s/b and
= 0 otherwise. It follows that α is constant after t = b and for t ≤ b, we have,

α(t) = λ

∫ t

0

1− s

b
ds = λ(t− t2

2b
).

We obtain,

α(10) =
3

8
λb ≃ 15M

α(20) = λb/2 ≃ 20M

(6) Answer the previous question now assuming that each owner keeps its car for an
exponential duration of parameter 1/10.
Similar computations yield,

α(t) = λ

∫ t

0

exp(−2s/b)ds =
λb

2

(
1− e−2t/b

)
.


